Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Genet Med ; 26(6): 101104, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38411040

ABSTRACT

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.

3.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984625

ABSTRACT

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Subject(s)
HIV Infections , Reverse Transcriptase Inhibitors , Humans , Reverse Transcriptase Inhibitors/adverse effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Drug Repositioning , HIV Infections/drug therapy , Aging
4.
Nat Commun ; 14(1): 2779, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188705

ABSTRACT

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Subject(s)
Aging , Antidepressive Agents , Harmine , Mitochondria , Mitophagy , Monoamine Oxidase , Receptors, GABA-A , Harmine/analogs & derivatives , Harmine/pharmacology , Antidepressive Agents/pharmacology , Mitochondria/drug effects , Mitophagy/drug effects , Muscle Fibers, Skeletal/drug effects , AMP-Activated Protein Kinase Kinases/metabolism , Muscle, Skeletal/drug effects , Liver/drug effects , Aging/drug effects , Insulin Resistance , Glucose Intolerance/metabolism , Prediabetic State/metabolism , Monoamine Oxidase/metabolism , Receptors, GABA-A/metabolism , Longevity/drug effects , Caenorhabditis elegans , Drosophila melanogaster , Frailty/prevention & control , Physical Conditioning, Animal , Models, Animal , Male , Female , Animals , Mice , Fatty Liver/metabolism , Adipose Tissue, Brown/drug effects
5.
Cell Rep ; 42(1): 111928, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640360

ABSTRACT

The human population is aging, and the need for interventions to slow progression of age-related diseases (geroprotective interventions) is growing. Repurposing compounds already used clinically, usually at modified doses, allows rapid implementation of geroprotective pharmaceuticals. Here we find the anti-retroviral nucleoside reverse transcriptase inhibitor (NRTI) zidovudine robustly extends lifespan and health span in C. elegans, independent of electron transport chain impairment or ROS accumulation. Rather, zidovudine treatment modifies pyrimidine metabolism and transcripts related to proteostasis. Testing regulators of mitochondrial stress and proteostasis shows that lifespan extension is dependent on activating transcription factor 4 (ATF-4). ATF-4 regulates longevity induced by mitochondrial stress, specifically communication between mitochondrial and cytosolic translation. Translation is reduced in zidovudine-treated worms, also dependent on ATF-4. Finally, we show ATF-4-dependent lifespan extension induced by didanosine, another NRTI. Altogether, our work elucidates the geroprotective effects of NRTIs such as zidovudine in vivo, via reduction of translation and ATF-4.


Subject(s)
HIV Infections , Zidovudine , Animals , Humans , Zidovudine/pharmacology , Zidovudine/therapeutic use , Longevity , Activating Transcription Factor 4 , Caenorhabditis elegans/physiology , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Retroviridae , HIV Infections/drug therapy
6.
Front Aging ; 3: 903049, 2022.
Article in English | MEDLINE | ID: mdl-35821857

ABSTRACT

Public attention and interest for longevity interventions are growing. These can include dietary interventions such as intermittent fasting, physical interventions such as various exercise regimens, or through supplementation of nutraceuticals or administration of pharmaceutics. However, it is unlikely that most interventions identified in model organisms will translate to humans, or that every intervention will benefit each person equally. In the worst case, even detrimental health effects may occur. Therefore, identifying longevity interventions using human data and tracking the aging process in people is of paramount importance as we look towards longevity interventions for the public. In this work, we illustrate how to identify candidate longevity interventions using population data in humans, an approach we have recently employed. We consider metformin as a case-study for potential confounders that influence effectiveness of a longevity intervention, such as lifestyle, sex, genetics, age of administration and the microbiome. Indeed, metformin, like most other longevity interventions, may end up only benefitting a subgroup of individuals. Fortunately, technologies have emerged for tracking the rate of 'biological' aging in individuals, which greatly aids in assessing effectiveness. Recently, we have demonstrated that even wearable devices, accessible to everyone, can be used for this purpose. We therefore propose how to use such approaches to test interventions in the general population. In summary, we advocate that 1) not all interventions will be beneficial for each individual and therefore 2) it is imperative that individuals track their own aging rates to assess healthy aging interventions.

7.
Ageing Res Rev ; 78: 101621, 2022 06.
Article in English | MEDLINE | ID: mdl-35421606

ABSTRACT

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Subject(s)
Longevity , Phosphatidylinositol 3-Kinases , Aged , Aging/genetics , Dietary Supplements , Forkhead Box Protein O3/genetics , Humans , Longevity/physiology , Pharmaceutical Preparations
8.
Aging Cell ; 20(8): e13381, 2021 08.
Article in English | MEDLINE | ID: mdl-34227219

ABSTRACT

Transcriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc-38. We found unc-38 RNAi to improve healthspan, lifespan, and stimulate DAF-16 nuclear localization, similar to atracurium treatment. Finally, using RNA-seq transcriptomics, we identify atracurium activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.


Subject(s)
Atracurium/therapeutic use , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Forkhead Transcription Factors/metabolism , Longevity/genetics , Receptors, Cholinergic/metabolism , Animals , Atracurium/pharmacology , Mice
9.
FASEB J ; 35(4): e21456, 2021 04.
Article in English | MEDLINE | ID: mdl-33724555

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Subject(s)
NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Animals , Cell Line , Cell Survival , Epithelial Cells/drug effects , Homeostasis , Humans , Kidney Tubules , Male , Mice , Mice, Inbred C57BL , Molecular Structure , NAD/genetics , Nicotinamide Mononucleotide/chemistry , Reperfusion Injury
10.
Front Aging ; 2: 708680, 2021.
Article in English | MEDLINE | ID: mdl-35822021

ABSTRACT

Intervening in aging processes is hypothesized to extend healthy years of life and treat age-related disease, thereby providing great benefit to society. However, the ability to measure the biological aging process in individuals, which is necessary to test for efficacy of these interventions, remains largely inaccessible to the general public. Here we used NHANES physical activity accelerometer data from a wearable device and machine-learning algorithms to derive biological age predictions for individuals based on their movement patterns. We found that accelerated biological aging from our "MoveAge" predictor is associated with higher all-cause mortality. We further searched for nutritional or pharmacological compounds that associate with decelerated aging according to our model. A number of nutritional components peak in their association to decelerated aging later in life, including fiber, magnesium, and vitamin E. We additionally identified one FDA-approved drug associated with decelerated biological aging: the alpha-blocker doxazosin. We show that doxazosin extends healthspan and lifespan in C. elegans. Our work demonstrates how a biological aging score based on relative mobility can be accessible to the wider public and can potentially be used to identify and determine efficacy of geroprotective interventions.

11.
Front Cell Dev Biol ; 8: 594416, 2020.
Article in English | MEDLINE | ID: mdl-33324647

ABSTRACT

Since the identification and definition of the hallmarks of aging, these aspects of molecular and cellular decline have been most often described as isolated or distinct mechanisms. However, there is significant evidence demonstrating interplay between most of these hallmarks and that they have the capacity to influence and regulate one another. These interactions are demonstrable across the tree of life, yet not all aspects are conserved. Here, we describe an integrative view on the hallmarks of aging by using the hallmark "mitochondrial dysfunction" as a focus point, and illustrate its capacity to both influence and be influenced by the other hallmarks of aging. We discuss the effects of mitochondrial pathways involved in aging, such as oxidative phosphorylation, mitochondrial dynamics, mitochondrial protein synthesis, mitophagy, reactive oxygen species and mitochondrial DNA damage in relation to each of the primary, antagonistic and integrative hallmarks. We discuss the similarities and differences in these interactions throughout the tree of life, and speculate how speciation may play a role in the variation in these mechanisms. We propose that the hallmarks are critically intertwined, and that mapping the full extent of these interactions would be of significant benefit to the aging research community.

12.
J Cell Biol ; 219(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32259199

ABSTRACT

Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Longevity/physiology , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Protein Biosynthesis/drug effects , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Gene Ontology , Longevity/genetics , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Microscopy, Electron, Transmission , Mitochondria/genetics , Protein Biosynthesis/physiology , Proteomics , RNA Interference , Reproduction/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
13.
Mech Ageing Dev ; 186: 111212, 2020 03.
Article in English | MEDLINE | ID: mdl-32017944

ABSTRACT

The mitochondria is the major hub to convert energy for cellular processes. Dysregulation of mitochondrial function is one of the classical hallmarks of aging, and mitochondrial interventions have repeatedly been shown to improve outcomes in age-related diseases. Crucial to mitochondrial regulation is the dynamic nature of their network structure. Mitochondria separate and merge using fission and fusion processes in response to changes in energy and stress status. While many mitochondrial processes are already characterized in relation to aging, specific evidence in multicellular organisms causally linking mitochondrial dynamics to the regulation of lifespan is limited. There does exist, however, a large body of evidence connecting mitochondrial dynamics to other aging-related cellular processes and implicates them in a number of human diseases. Here, we discuss the mechanisms of mitochondrial fission and fusion, the current evidence of their role in aging of multicellular organisms, and how these connect to cell cycle regulation, quality control, and transmission of energy status. Finally, we discuss the current evidence implicating these processes in age-related human pathologies, such as neurodegenerative or cardio-metabolic diseases. We suggest that deeper understanding of the regulatory mechanisms within this system and downstream implications could benefit in understanding and intervention of these conditions.


Subject(s)
Aging/physiology , Metabolic Syndrome/metabolism , Mitochondrial Dynamics/physiology , Neurodegenerative Diseases/metabolism , Humans
14.
EMBO Mol Med ; 11(9): e9854, 2019 09.
Article in English | MEDLINE | ID: mdl-31368626

ABSTRACT

Reversing or slowing the aging process brings great promise to treat or prevent age-related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the "classical" histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age-related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.


Subject(s)
Healthy Aging/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Animals , Drug Evaluation, Preclinical , Epigenesis, Genetic , Healthy Aging/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Longevity/drug effects
15.
PLoS Genet ; 15(3): e1007633, 2019 03.
Article in English | MEDLINE | ID: mdl-30845140

ABSTRACT

The deregulation of metabolism is a hallmark of aging. As such, changes in the expression of metabolic genes and the profiles of amino acid levels are features associated with aging animals. We previously reported that the levels of most amino acids decline with age in Caenorhabditis elegans (C. elegans). Glycine, in contrast, substantially accumulates in aging C. elegans. In this study we show that this is coupled to a decrease in gene expression of enzymes important for glycine catabolism. We further show that supplementation of glycine significantly prolongs C. elegans lifespan, and early adulthood is important for its salutary effects. Moreover, supplementation of glycine ameliorates specific transcriptional changes that are associated with aging. Glycine feeds into the methionine cycle. We find that mutations in components of this cycle, methionine synthase (metr-1) and S-adenosylmethionine synthetase (sams-1), completely abrogate glycine-induced lifespan extension. Strikingly, the beneficial effects of glycine supplementation are conserved when we supplement with serine, which also feeds into the methionine cycle. RNA-sequencing reveals a similar transcriptional landscape in serine- and glycine-supplemented worms both demarked by widespread gene repression. Taken together, these data uncover a novel role of glycine in the deceleration of aging through its function in the methionine cycle.


Subject(s)
Caenorhabditis elegans/metabolism , Glycine/metabolism , Longevity/physiology , Methionine/metabolism , Aging/drug effects , Aging/genetics , Aging/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Diet , Genes, Helminth , Glycine/administration & dosage , Longevity/drug effects , Longevity/genetics , Metabolic Networks and Pathways/genetics , Mutation , RNA Interference , Serine/administration & dosage , Serine/metabolism , Transcriptome/drug effects
16.
BMC Obes ; 2: 3, 2015.
Article in English | MEDLINE | ID: mdl-26217518

ABSTRACT

BACKGROUND: The potential health effects of polybrominated diphenyl ethers (PBDEs) that are widely used as flame-retardants in consumer products have been attributed, in part, to their endocrine disrupting properties. The purpose of this study is to examine the in vivo effects of an early exposure to PBDEs on the development of insulin resistance in mice. RESULTS: The metabolic consequences of BDE-47 in mice with varying insulin sensitivities secondary to liver-specific activation of Akt (Pten (fl/fl);Alb (Cre)) and mTORC1 (Tsc1 (fl/fl);Alb (Cre)) as well as wild-type littermates, were studied. BDE-47, a dominant congener of PBDE, was given daily (1 mg/kg/day) for six weeks by oral gavage in young mice following weaning. At the end of the exposure, there were no significant differences in total body, liver, or white adipose tissue weights between the BDE-47-treated vs. DMSO-treated mice for each respective genotype. Metabolic studies revealed significant impairment in insulin sensitivity in the BDE-47-treated Pten (fl/fl);Alb (Cre) mice, but not in wild-type or Tsc1 (fl/fl);Alb (Cre) mice. This was not accompanied by significant alterations in plasma insulin levels or hepatic triglyceride accumulation in the Pten (fl/fl);Alb (Cre) mice. The mean plasma BDE-47 level in the wild-type mice was 11.7 ± 2.9 ng/g (wet weight). CONCLUSIONS: Our findings indicate that BDE-47 exposure during the early post-natal period induces a mild disturbance in glucose metabolism in susceptible mice with increased baseline insulin sensitivity. These results suggest an interaction between BDE-47 and genetic factors that regulate insulin signaling, which may result in long-term consequences.

17.
Gastroenterology ; 144(5): 1055-65, 2013 May.
Article in English | MEDLINE | ID: mdl-23376645

ABSTRACT

BACKGROUND & AIMS: Phosphatidylinositide 3-kinase (PI3K) is deregulated in many human tumor types, including primary liver malignancies. The kinase v-akt murine thymoma viral oncogene homolog 1 (Akt) and mammalian target of rapamycin complex (mTORC1) are effectors of PI3K that promote cell growth and survival, but their individual roles in tumorigenesis are not well defined. METHODS: In livers of albumin (Alb)-Cre mice, we selectively deleted tuberous sclerosis (Tsc)1, a negative regulator of Ras homolog enriched in brain and mTORC1, along with Phosphatase and tensin homolog (Pten), a negative regulator of PI3K. Tumor tissues were characterized by histologic and biochemical analyses. RESULTS: The Tsc1fl/fl;AlbCre, Ptenfl/fl;AlbCre, and Tsc1fl/fl;Ptenfl/fl;AlbCre mice developed liver tumors that differed in size, number, and histologic features. Livers of Tsc1fl/fl;AlbCre mice did not develop steatosis; tumors arose later than in the other strains of mice and were predominantly hepatocellular carcinomas. Livers of the Ptenfl/fl;AlbCre mice developed steatosis and most of the tumors that formed were intrahepatic cholangiocarcinomas. Livers of Tsc1fl/fl;Ptenfl/fl;AlbCre formed large numbers of tumors, of mixed histologies, with the earliest onset of any strain, indicating that loss of Tsc1 and Pten have synergistic effects on tumorigenesis. In these mice, the combination of rapamycin and MK2206 was more effective in reducing liver cell proliferation and inducing cell death than either reagent alone. Tumor differentiation correlated with Akt and mTORC1 activities; the ratio of Akt:mTORC1 activity was high throughout the course of intrahepatic cholangiocarcinomas development and low during hepatocellular carcinoma development. Compared with surrounding nontumor liver tissue, tumors from all 3 strains had increased activities of Akt, mTORC1, and mitogen-activated protein kinase and overexpressed fibroblast growth factor receptor 1. Inhibition of fibroblast growth factor receptor 1 in Tsc1-null mice suppressed Akt and mitogen-activated protein kinase activities in tumor cells. CONCLUSIONS: Based on analyses of knockout mice, mTORC1 and Akt have different yet synergistic effects during the development of liver tumors in mice.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms, Experimental/genetics , Multiprotein Complexes/genetics , Mutation , Proto-Oncogene Proteins c-akt/genetics , RNA, Neoplasm/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Blotting, Western , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Immunohistochemistry , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...